Scientists Successfully Create Diamonds Out of Bottle Plastic
Posted: Thu Oct 06, 2022 10:43 pm
Scientists Successfully Create Diamonds Out of Bottle Plastic
https://scitechdaily.com/scientists-suc ... e-plastic/
In the experiment, a thin sheet of simple PET plastic was shot with a laser. The strong laser flashes that hit the foil-like material sample briefly heated it up to 6000 degrees Celsius and thus generated a shock wave that compressed the matter to millions of times the atmospheric pressure for a few nanoseconds. The scientists were able to determine that tiny diamonds, so-called nanodiamonds, formed under extreme pressure.
A research team utilizes laser flashes to replicate the interior of ice planets, which inspires a new method of creating tiny diamonds.
What transpires inside planets like Uranus and Neptune? An innovative experiment was carried out to find out by a global team led by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the University of Rostock, and France’s École Polytechnique. They used intense laser flashes to study what occurred when they shot a laser at a thin sheet of simple PET plastic.
As a consequence, the scientists were able to support their prior hypothesis that diamonds really do rain within the ice giants at the edge of our solar system. Another was that this technique would provide a brand-new approach to making nanodiamonds, which are needed, for example, in very sensitive quantum sensors. The team’s findings were recently published in Science Advances.
Extreme conditions occur in the interior of large icy planets like Neptune and Uranus, with pressure millions of times higher than on Earth and temperatures that can reach several thousand degrees Celsius. However, states like these can be briefly reproduced in the lab by using intense laser flashes to hit a sample of a film-like material, heat it to 6,000 degrees Celsius in the blink of an eye, and create a shock wave that compresses the material to a million times the atmospheric pressure for a few nanoseconds.
“Up to now, we used hydrocarbon films for these kinds of experiments,” explains Dominik Kraus, a physicist at HZDR and professor at the University of Rostock. “And we discovered that this extreme pressure produced tiny diamonds, known as nanodiamonds.”
However, since ice giants also contain significant quantities of oxygen, in addition to carbon and hydrogen, it was only partially able to replicate the interior of planets using these films. When looking for suitable film material, the researchers stumbled upon an everyday substance: PET, the resin used to make ordinary plastic bottles.
https://scitechdaily.com/scientists-suc ... e-plastic/
In the experiment, a thin sheet of simple PET plastic was shot with a laser. The strong laser flashes that hit the foil-like material sample briefly heated it up to 6000 degrees Celsius and thus generated a shock wave that compressed the matter to millions of times the atmospheric pressure for a few nanoseconds. The scientists were able to determine that tiny diamonds, so-called nanodiamonds, formed under extreme pressure.
A research team utilizes laser flashes to replicate the interior of ice planets, which inspires a new method of creating tiny diamonds.
What transpires inside planets like Uranus and Neptune? An innovative experiment was carried out to find out by a global team led by the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the University of Rostock, and France’s École Polytechnique. They used intense laser flashes to study what occurred when they shot a laser at a thin sheet of simple PET plastic.
As a consequence, the scientists were able to support their prior hypothesis that diamonds really do rain within the ice giants at the edge of our solar system. Another was that this technique would provide a brand-new approach to making nanodiamonds, which are needed, for example, in very sensitive quantum sensors. The team’s findings were recently published in Science Advances.
Extreme conditions occur in the interior of large icy planets like Neptune and Uranus, with pressure millions of times higher than on Earth and temperatures that can reach several thousand degrees Celsius. However, states like these can be briefly reproduced in the lab by using intense laser flashes to hit a sample of a film-like material, heat it to 6,000 degrees Celsius in the blink of an eye, and create a shock wave that compresses the material to a million times the atmospheric pressure for a few nanoseconds.
“Up to now, we used hydrocarbon films for these kinds of experiments,” explains Dominik Kraus, a physicist at HZDR and professor at the University of Rostock. “And we discovered that this extreme pressure produced tiny diamonds, known as nanodiamonds.”
However, since ice giants also contain significant quantities of oxygen, in addition to carbon and hydrogen, it was only partially able to replicate the interior of planets using these films. When looking for suitable film material, the researchers stumbled upon an everyday substance: PET, the resin used to make ordinary plastic bottles.